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Abstract

We propose the CodeFlow toolchain for Flash-X that realizes the “recipe-to-source” code transfor-
mation for Flash-X simulations and that is necessary to achive performance portability. We design
a high-level language to express operations of simulations in so-called recipes, which are given
as input to the toolchain. The tools of the CodeFlow pipeline include code transformation with
tree-based source code representation techniques and code orchestration and generation based on
control flow graphs. The generated source code utilizes a new runtime, developed for Flash-X, that
orchestrates dynamic and asynchronous data movement and task execution. The functionality of
CodeFlow is demonstrated using a hydrodynamic problem with a strong shock.

1 Introduction

We present discrete tools that are linked with each other to arrive at a code generation pipeline for a
particular scientific applications, Flash-X. To this end, we propose the CodeFlow toolchain for Flash-X.
The tools of the toolchain build on two main concepts, namely code transformation with tree-based
source code representation techniques and code orchestration and generation with graph algorithms
for the control flow of Flash-X simulations. Flash-X is a new code derived from FLASH [5]. It builds
up the architecture from ground up and it performs large-scale astrophysics multiphysics simulations.
One crucial addition to Flash-X is the new orchestration runtime [10]. We aim to deploy CodeFlow to
generate source code that creates the interface between static Flash-X code (e.g, of physics units) and
the runtime, which features dynamic asynchronous task execution and data movement.

We introduce multiple levels of abstraction to source code of Flash-X simulations, which arise
from utilizing CodeFlow, in order to achieve performance portability on heterogeneous hardware
architectures of compute nodes of leadership-class supercomputers. Currently, these nodes typically
consist of one or multiple CPUs and one or several GPUs; however, architectures are likely to change
in the future and our toolchain-based approach aims to adapt to unknown future architectures (e.g.,
accelerators and FPGAs). The adaptability to unknown architectures is possible by designing tools
that are flexible and that users can modify according to the requirements of applications or computing
platforms. CodeFlow aims to accomplish this by allowing source code generation in any programming
language and by transparency of the code generation process to users.



Background As scientific applications such as Flash-X become more realistic, the complexities
of their implementation codes increase dramatically. Simultaneously, the hardware of parallel high-
performance systems transitions to increasingly heterogeneous architectures with CPUs and accelerators
(e.g., GPUs) having different computing throughput and memory bandwidth, requiring additional
programming efforts. This challenging landscape of complex scientific application codes and intricate
hardware utilization demands adaptable and maintainable software that is capable of maintaining
good parallel performance, which is often summarized as performance portability.

High-level abstractions have been introduced to hide the platform complexity from the scientific
components of the software. Most currently existing tools, for instance Kokkos [6], Raja [1], AMReX [11],
and STELLA /GridTools [7], rely on template metaprogramming in C++ to implement the abstractions.
This makes these tools less attractive for applications written in other languages, for instance, Fortran
in the case of Flash-X. Additionally, the tools require users to fully embrace one abstraction tool and
to completely rely on it for performance. This prohibits the use of expert knowledge by users about
their application or a specific target platform.

The Flash-X software was recently augmented by a runtime [10], which has been developed by the
authors and other collaborators. The runtime exposes the underlying parallelism in heterogeneous
hardware nodes in such a way that computational code can make efficient use of the hardware’s
resources. As part of this, the runtime is responsible for the orchestration of both data movement and
task execution with the goal of maximizing asynchronous operations. This development opened the
opportunity for creating automated code generation tools that create interface code between static
physics code of Flash-X and the runtime.

Contributions We propose the CodeFlow toolchain, where users write a recipe of a Flash-X
simulation using a domain specific language (DSL). The DSL is designed to express a control flow
of operations. The syntax encodes dependencies between the operations, and it is similar to the
functional syntax of TensorFlow/Keras. CodeFlow generates a control flow graph associated with a
recipe, which takes the form of a directed acyclic graph. It analyzes and transforms the graph in order
to be able to extract sets of subroutines performed locally on a device (e.g., CPU or GPU) and to
infer data movement between devices of a heterogeneous compute node.

The control flow graph is transformed into a hierarchical graph, which enables parsing of source code
that interfaces with the runtime by providing the implementation of data packets, whose movements
the runtime will oversee, and by autogenerating device-specific code for subroutines that are launched
by the runtime.

Additionally, CodeFlow aims to be transparent to users, and it aims to provide control mechanisms
for experienced users who want to perform optimizations themselves or when pure automation is not
sufficient for achieving performance targets. In the latter case, users should be able to intervene in
intermediate results of CodeFlow in order to incorporate their expert knowledge about the application
and target platform.

2 Code transformation with source trees and abstract syntax trees

This section presents two code transformation tools. We propose a new technique in Section 2.1 that
exploits tree topologies for source code generation. Our approach is based on a simplification of
abstract syntax trees, which are described in Section 2.2.
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Figure 1: UML diagram of parametrized source trees. A SourceTree is composed of one or multiple
Connectors that contain one Code object; Code contains lines of source code or provide a Link. Links
and Connectors are associated by matching keys. Parameters can exists at the SourceTree level and
within Connectors.

2.1 Parametrized source trees

We propose code transformation with parametrized source trees (PSTs). PSTs are trees of source
code that can be assembled by automated tools based on predefined sets of templates. Each template
contains lines of source code and also placeholders for including additional code. These placeholders,
which we call links, represent nodes in the source tree topology. To complement the links, templates
also specify connectors, which, in turn, enable each template to be included at any level of the PST.

The PST design is illustrated in Figure 1, and while it is based on just three simple concepts of
source code, links, and connectors, it allows for a great versatility in code generation. The source
trees are in addition parametrized (Parameter class in Figure 1) such that the templates can take into
account context information. The parameters are passed down the tree hierarchy such that parameter
definitions at higher-levels can be used at lower levels of the tree. In order to access a parameter, the
source code simply contains the parameter’s unique key, and a substitution will take place when the
assembled PST is parsed.

The correctness of a PST is verified by checking its structure and by asserting the existence of all
parameter definitions. Additionally, it is always possible for users to inspect intermediate PSTs at any
stage of the assembly. When parsing a PST, the user can request a verbose output, where commented
lines are inserted around lines of code in order to refer to the template that is responsible for these
lines.

We illustrate the usage of PSTs with a simple example of an AXPY operation, shown in the
templates of Listings 1 to 4 using the JSON file format. Listing 1 implements the main function and
provides links for function definitions before the main function (_link:setup) and code inside the
main function (_link:execute). Listings 2 and 3 implement two alternative versions for performing
the AXPY operation, and either one or the other is connected to the links in Listing 1. Listing 2 is the
template for a GPU code and Listing 3 is CPU code. Finally, Listing 4 isolates the AXPY arithmetic
in a singe template, which is possible due to the parametrization of the preceding templates. The
example also illustrates the use of parameters to change the variable types of the floating point arrays
(float or double) via _param:axyType; and it shows the possibility of substituting constants, such as



" _connector:main": {
" _param:axyFunction": "saxpy",
" _param:axyType": "float",
" _param:size": 3200000,
" _param:a": "a
" _param:x": "x
" _param:y": "y
"_code": [
{
" _param:indent": O,
"_link:setup": []
g
"int main(void)",
",
" /% ... initialize ... *x/",
{
" _param:indent": 1,
" link:execute": []
I
" /x ... finalize ... *x/",

n}u

n

>
n

)
n

>

Listing 1: PST example of AXPY: Template for main file.

_param:size, directly into parsed source.

The main motivation behind our parametrized source trees is to create a lightweight alternative
to abstract syntax trees, which significantly reduces implementation efforts for users. However,
transformation of abstract syntax trees can be advantageous in some cases of code transformation,
which we describe next.

2.2 Abstract syntax trees

Abstract syntax trees (ASTS) [4,9] are rich in the context information they can provide for code
transformation. This is especially important if an analysis of source code has to be performed
before code transformation can take place. We aim to use the powerful concept of source-to-source
transpilation via ASTs [2,3] in order to analyse and transform low-level computational kernels, which
are typically nested loops containing computationally significant floating point arithmetic. These
kernels are transformed and optimized to adapt the code to different hardware architectures.

The main advantage of AST-based transpilation is the ability to ingest code directly without
needing the intervention by users to incorporate a code transformator, such as PST, into their workflow.
However, this comes at higher development efforts for controlling AST-based code transformation. In
our preliminary work the AST transpilation approach has demonstrated to be effective for low-level
computational kernels because of their compact source codes. In addition to code transformation,
the AST can be essential in analysing source code, for example, extracting function declarations and
classification of function arguments.



1 {

2 "_connector:setup": {

3 " _param:idx": "i"

4 " _code": [

5 " __global__",

6 "void _param:axyFunction(_param:axyType _param:a,",

7 " _param:axyType *_param:x,",

8 " _param:axyType *_param:y)",

9 ",

10 " int _param:idx = blockIdx.x*blockDim.x + threadIdx.x;",

11 {

12 " _param:indent": 1,

13 " _link:execute": []

14 },

15 "

16 ]

17 },

18 " _connector:execute": {

19 " _param:threadBlockSize": 320,
20 " _code": [
21 " _param:axpFunction",
22 " <<<_param:size/_param:threadBlockSize, _param:threadBlockSize>>>",
23 ! (_param:a, _param:x, _param:y);"
24 ]
25 }

26 }

Listing 2: PST example of AXPY: Template for GPU kernel function and kernel execution.

1 {

2 " _connector:execute": {

3 " _param:idx": "i",

4 " _code": [

5 "for (int _param:idx=0; _param:idx<_param:size; _param:idx++) {",
6 {

7 " _param:indent": 1,

8 " link:execute": []

9 },

10 Uy
11 ]
12 }

13}

Listing 3: PST example of AXPY: Template for CPU loop.

1 {

2 " _connector:execute": {

3 " _code": [

4 " _param:y[_param:idx] = _param:a*_param:x[_param:idx] + _param:y[_param:idx];"
5 ]

6 }

7 }

Listing 4: PST example of AXPY: Template for arithmetic operation.



aR = Action(routine=’function_R’) ()

aS = Action(routine=’function_S’) (aR)
aT = Action(routine=’function_T’) (aS)
aX = Action(routine=’function_X’) (a8S)
i a¥Y = Action(routine=’function_Y’) (aX)
aZ = Action(routine=’function_Z’) ([aT,aY])

Listing 5: Example of Pipeline pattern.

BH—(—0—
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Figure 2: Example control flow graph of Pipeline pattern, corresponding to Listing 5.

3 Code orchestration with hierarchical control flow graphs

The code transformation systems of Section 2 can be utilized directly by users as well as by automated
tools. This section describes our code generation approach with CodeFlow, which uses our PSTs from
Section 2.1 for code transformation.

We design a new high-level DSL that allows users to express control flows of applications in form of
concise recipes (see Section 3.2). The DSL is based on the Python language and it follows a so called
“define and run®“ principle. This principle entails that a recipe describes the composition of building
blocks in form of subroutines, called actions, and their dependencies. The syntax for recipes is derived
from the patterns in Section 3.1. Recipes are processed into control flow graphs, which subsequently
are analyzed and transformed as detailed in Section 3.3. The resulting transformed control flow graph
can be traversed to assemble source code based on PSTs.

3.1 Patterns

In this section, we identify several patterns that need to be supported by our recipe DSL for Flash-X.
In addition, it is possible to further extend the syntax of the DSL in the future, if we need to support
new patterns for new classes of applications beyond Flash-X.

The important patterns for expressing operations of Flash-X at the recipe level are based on the
following main concepts: (i) dependencies between operations; (i) concurrent data items that a single
operation is executed on; (iii) concurrent operations that are executed on a single data item; (iv)
mapping operations to hardware of a compute node.

Pattern: Pipeline Pipelines express the execution order of actions and dependencies of actions to
one another. Actions are defined as operations that are performed on blocks of the computational
mesh. Data flows through a Pipeline in a concurrent fashion. The Pipeline pattern is fundamental for
the realization of the control flow graphs that are presented in Section 3.3. We illustrate this pattern
with an example in Listing 5 and show the corresponding control flow graph in Figure 2.

Note that in Listing 5 the variables on the left-hand side of the equal sign should be understood as
handles, which are used to indicate dependencies between actions. In particular, they do not represent
output data generated by an action. The handles are passed as arguments in the second brackets to set



it = Iterator(iterType=’leaves’)

dIn = ConcurrentDataBegin () (it)
aR = Action(routine=’function_R’) ()
aS = Action(routine=’function_S’) (aR)
; aT = Action(routine=’function_T’) (aS)
aX = Action(routine=’function_X’) (aS)
aY = Action(routine=’function_Y?’) (aX)
aZ = Action(routine=’function_Z’) ([aT,aY])

dOut = ConcurrentDataEnd () (aZ)

Listing 6: Example of Iterator and Concurrent Data patterns.

aX = Action(routine=’function_X’) ()
aC = ConcurrentActions ([Action(routine=’function_R?’),
Action(routine=’function_S’),
Action(routine=’function_T’)]) (aX)
5 a¥Y = Action(routine=’function_Y?’) (aC)

Listing 7: Example of Concurrent Actions pattern.

—>

)

@7@

Figure 3: Example control flow graph of Concurrent Actions pattern, corresponding to Listing 7.

a dependency. The arguments passed with the keyword “routine” are function names of implemented
functions. We denote the functions that implement an action as action routines.

Pattern: Iterator An Iterator defines which blocks of the computational mesh are passed to actions
and, more generally, to pipelines of actions. Typically Flash-X iterators iterate over blocks of the
mesh that are leaves or levels of the adaptively refined mesh.

Note that setting up an Iterator corresponds to setting up the “Action Parallel Distributor” of the
runtime [10].

Pattern: Concurrent Data The Concurrent Data pattern describes that a single action, or a
pipeline of actions, is executed on independent data items. While the Iterator provides the data source
to pipelines, the Concurrent Data is the link between an Iterator and a pipeline, therefore it depends
on the Iterator. We extend the previous example in Listing 5.

Pattern: Concurrent Actions The Concurrent Actions pattern describes that independent actions
are executed on a single data item. While Listing 5 demonstrated concurrent actions by setting
dependency handles appropriately, we also provide this pattern for explicitly defining concurrent
actions. It is illustrated in Listing 7.
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it = Iterator(iterType=’leaves’)

dIn = ConcurrentDataBegin () (it)
aR = Action(routine=’function_R’) ()
aS = Action(routine=’function_S’) (aR)
; aT = Action(routine=’function_T’) (aS)
aX = Action(routine=’function_X’) (aS)
aY = Action(routine=’function_Y’) (aX)
aZ = Action(routine=’function_Z’) ([aT,aY])
dOut = ConcurrentDataEnd () (aZ)

ConcurrentHardware (CPU={’actions’: [aR,aS,aT,aZl},
GPU={’actions’: [aX,aY]})

Listing 8: Example of Concurrent Hardware pattern.

(ConcurrentDat aBegin] [ConcurrontDat aEnd]
' f
O—E—@—

CPU CPU CPU CPU

Cr—

GPU GPU

Figure 4: Example control flow graph of Concurrent Hardware pattern, corresponding to Listing 8,
where node attributes define the device that an action is executed on, CPU or GPU here.

Pattern: Concurrent Hardware The Concurrent Hardware pattern is designed to establish a
unique mapping between actions of a pipelines and heterogeneous hardware of a compute node. We
express the mapping of actions to the hardware/device, on which an action will be executed, in an
orthogonal manner by a separate syntax. Here, the handles of actions are utilized again.

The Concurrent Hardware pattern is demonstrated in Listing 8, where we extend the previous
Listing 6. In this example, we assume the hardware node to contain two compute devices, CPU and
GPU, which are used as keyword arguments of ConcurrentHardware ().

Pattern: Concurrent Actions, Data, Hardware As the name of the pattern suggests, we are
combining our previous patterns in order to realize the splitting of concurrent data items such that a
certain amount of data items is dispatched to one device and the remaining items to another device
(i.e., simultaneously Concurrent Data and Hardware). Additionally, we allow for the possibility of
executing different actions on different devices (i.e., simultaneously Concurrent Actions and Data and
Hardware).

We implement mechanisms to let users control the splitting ratio and we allow for the ratio to be
undetermined at the code generation phase. In the latter case, the ratio will be determined by load
balancing techniques of the runtime.



3.2 Recipes

Recipes are written by users of Flash-X in a DSL that realizes the patterns from Section 3.1. The
motivation for developing the recipe DSL is to, on the one hand, enable users to express high-level
operations of a particular Flash-X multi-physics simulation in a concise manner. On the other hand,
the recipe DSL enables the development of new tools for performance portability.

The recipe DSL of CodeFlow for Flash-X is designed based on the following requirements:

(i) a recipe expresses one full time step of a Flash-X simulation,
(ii) a recipe consists of operations (e.g., actions) defined by the patterns of Section 3.1,

(iii) a recipe can contain operations involving code that is not executed by the runtime (e.g., calls to
external libraries),

(iv) recipes are associated with a collection of source code templates (e.g., based on PSTs),

(v) transforming a recipe through a toolchain to source code needs to be transparent and allow for
user interventions at intermediate steps.

To generate functional source code from recipes, actions need to be implemented for a target platform.
To generate platform-specific code for this purpose, we have been developing AST-based tools, but
they are not discussed in the present paper. An example recipe is provided by Listing 9 in Section 4.

3.3 Control flow graphs

Given a recipe from Section 3.2, CodeFlow generates the corresponding control flow graph that has
the structure of a directed acyclic graph. The nodes of the graph represent operations and actions,
and the graph’s edges represent an order of operations, possibly due to dependencies. The edges are
additionally used to store information about data movement, which is inferred from the nodes.

We define requirements that constitute a valid control flow graph for our purposes:

(i) the graph is a directed acyclic graph,

(i) it has a unique root node R and a unique end node FE,

for any node U of the graph, there exists a path from R to E that visits U,

)
)
(iii) the longest path of the graph starts at R and ends at F,
(iv)
)

(v) nodes corresponding to actions have a hardware device assigned to them.

As a consequence of the requirements, we can assume that control flow graphs can be referred to
by tuples of root and end nodes. The assignment of devices to actions is realized by storing device
information as an attribute of a node. These node attributes can then be used to identify—for all
edges—whether a device change occurs between adjacent nodes. For this, we perform one traversal of
the graph. During this traversal, we also propagate data movement information through the graph
and include this information to the attributes of edges.

Processing a given recipe to generated code that interfaces with the orchestration runtime [10] is
outlined in the following three steps. First, a control flow graph is generated from a recipe, where
each operation of the recipe corresponds to one node of the graph, and the nodes are assigned
hardware/devices for their execution. Second, this graph is transformed into a hierarchical control flow
graph of two levels, where the coarse level only contains edges of the original graph that are marked for



a change of devices. Third, the coarse level graph is parsed to source code, which represents the driver
of a Flash-X simulation utilizing the runtime; this implies the choice of thread-team configuration
pertaining to the runtime (see [10]). The finer levels consist of subgraphs of the original graph. They
are used to parse device-specific source code that is executed by the runtime, hence, these represent a
“patch code” between the static Flash-X routines and the runtime.

CodeFlow builds upon the NetworkX library [8] for our implementation of directed acyclic graphs.

Creating and setting up control flow graphs The recipe DSL implements a functional syntax
where function calls with two pairs of brackets are utilized (e.g., Action(...)(...) in Listing 5).
Internally, this is realized by a function returning another function that accepts dependencies as
arguments. The dependencies are provided in the form of handles the second pair of brackets, where
the handles internally refer to nodes of the control flow graph. Different recipe DSL commands insert
different types of nodes into the graph, which distinguish themselves by having different objects
associated to them, such as, Iterators, Actions, etc. In summary, each command of the DSL inserts a
new node into the control flow graph and inserts edges pointing from dependent nodes to the new
node.

Device assignments stemming from ConcurrentHardware() calls are realized by adding node
attributes to nodes that are associated with actions. After the assignment of devices is completed, the
control flow graph is ready for further processing and analysis by the algorithms described next.

After creating the graph and assigning devices based on a recipe, we proceed to the setup that
consists of determining device changes between neighboring nodes of the control flow graph. This is
carried out with one recursive traversal of the graph, which is described in Algorithm 3.1. During
this traversal, we also gather data movement information and annotate the associated edges with this
information. Next, the control flow graph is transformed into a hierarchical graph as detailed in the
next paragraph.

Algorithm 3.1 Set up edges of control flow graph for device change

Function: setUp(node U, data movement information M)

initialize U to graph’s root node, if U is not defined
initialize M to be empty, if M is not defined
if U has data usage information then
update data movement M with data usage information from node U
end if
for all neighbors N of U do
annotate edge (U — N) whether device is changed
if device change between N and U then
annotate edge (U — N) with data movement information M
end if
call setUp(N, M)
: end for

=
o2

Transforming to hierarchical control flow graphs The control flow graph is now transformed
into a hierarchical graph of two levels, where the coarse level only contains edges of the original
“flat” graph that are marked for a change of devices. Algorithm 3.2 shows the steps required for
transformation to a hierarchical graph, where each of the steps invoke their own algorithm.

In the first step, the device change attribute that was assigned to all edges in Algorithm 3.1 serves
to separate coarse edges F. from edges F, that are designated for subgraphs. The separation of

10



edges is detailed in Algorithm 3.3. The set of edges Es is used to extract subgraphs as described in
Algorithm 3.4, resulting in the set of graphs, GG5. In the final step of the transformation process to a
hierarchical graph, Algorithm 3.5 assembles the two-level hierarchy of coarse graph and subgraphs G,
where the connectivity of the coarse edges F. is used to link nodes at the coarse level.

Algorithm 3.2 Create hierarchical control flow graph

Function: toHierarchicalGraph()

1: separate edges into coarse edges F. with device change and others FEj > see Algorithm 3.3
2: create subgraphs G5 from edges Fs without device change > see Algorithm 3.4
3: assemble hierarchical graph from subgraphs G and coarse edges E. > see Algorithm 3.5

Algorithm 3.3 Separate edges into coarse edges E. with device change and remaining edges Fj

Function: separateEdges()

1: initialize E. = {} and E; = {}
2: for all nodes U do
3: 0 + False, initialize no device change

4: for all neighbors N of U do

5: if edge (U — N) has device change then
6: 0 < True

7 exit loop

8: end if

9: end for

10: if § then

11: for all neighbors N of U do
12: add edge (U — N) to E.
13: end for

14: else

15: for all neighbors N of U do
16: add edge (U — N) to Ej
17: end for

18: end if

19: end for

20: return E., F,

Parsing source code from hierarchical control flow graphs After transforming a “flat” control
flow graph into a hierarchical graph, we are ready for the final stage of the code generation pipeline,
namely, to extract source code from the graph. The parsing of source code is performed by traversing
the hierarchical control flow graph and calling a code assembler at each coarse node. This generates
source code for the driver of Flash-X including code governing the invocation of the runtime. During
the traversal of the coarse levels, each subgraph can generate code that implements runtime actions.
Each edge of the coarse graph that contains data movement information triggers source code generation
for data packets.

With these three components of source code generation for driver code, action related code, and
data packet related code, we satisfy the interface required for using the runtime. Therefore, the source
code for a Flash-X simulation is complete and we can proceed to the compilation phase.

11



Algorithm 3.4 Create subgraphs using edges F, without device change

Function: createSubGraphs(edges Ej)

create subgraph H from edges Es without device change, and their adjacent nodes
create multiple subgraphs G4 by splitting H into weakly connected components

create single-node subgraphs and add to Gy
return G

Algorithm 3.5 Assemble hierarchical graph from subgraphs G and coarse edges FE.

Function: assembleHierarchy(subgraphs G, edges E.)

initialize empty graph H

for all subgraphs G € G5 do
add new (coarse) node U, to H that contains graph G

end for

for all edges £ = (S — T) € E. do
find node S, € H such that S is an end node of a subgraph contained in coarse node S,
find node T, € H such that T is a root node of a subgraph contained in coarse node T,
add edge (S, — T¢) to H

end for

return H

,_.
e

4 Sedov example demonstrating a proof of concept

The Sedov problem is a hydrodynamic simulation with strong shocks and a nonplanar symmetry. The
problem consists of evolving a cylindrical /spherical blast wave from a pointwise perturbation of the
pressure in a homogeneous medium. For our proof of concept, we use Flash-X’s simple unsplit method
and HLL-type Riemann solver to solve the Sedov problem.

We are given static routines as a GPU implementation and a CPU implementation. The goal is to
generate source code for the driver that utilizes the runtime with a target thread-team configuration,
which consists of an action pipeline utilizing a GPU for a sequence of actions and a CPU for other
actions. Utilizing the runtime entails the generation of source code for subroutines whose execution is
managed by the runtime.

To setup CodeFlow for this code generation task, we create PST templates for the driver code and
use a collection of templates for the subroutine code in order to encode platform-dependent source
code at multiple different levels. Due to the flexible composability of PSTs, only a handful of templates
(five in this example) are required to realize various platform-specific action pipelines.

Now, we use the recipe in Listing 9 to describe the actions of the simulation, their dependencies,
and the mapping of actions to hardware devices. This recipe is processed by CodeFlow into a control
flow graph, shown at the top of Figure 5. Node 0 represents the graph’s root, and nodes 1 and 2
are the Iterator and ConcurrentDataBegin in the recipe, respectively. They are followed by four
actions that are mapped to the GPU and one action designated to the CPU. The final node refers to
ConcurrentDataknd in the recipe. The “flat” control flow graph is transformed into a hierarchical
graph, of which we show the coarse nodes in the middle of Figure 5, where all GPU actions are gathered
into a subgraph. The coarse level of the hierarchical control flow graph is matched to the graph
corresponding to our target thread-team configuration (bottom graph in Figure 5). The thread-team
configuration is illustrated from the perspective of the runtime in Figure 6.

After the processing of graphs, CodeFlow can assemble the full PSTs of the driver, the GPU
subroutine, and the CPU subroutine. These three PSTs are provided in Appendix A in Listings 10
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to 12. Finally, the PSTs are parsed into code, which is given in Listings 13 to 15. Note that the data
packet related code is not generated in this proof-of-concept example, because we use a generic data
packet implementation. The generation of data packet source code that is tailored to the simulation is
ongoing research.

5 Discussion and future work

The CodeFlow toolchain for Flash-X successfully realizes recipe-to-source code transformation of an
example Flash-X simulation, the Sedov problem. In the future, we are extending the feature set of
CodeFlow to be able to accommodate all use cases of multiphysics Flash-X simulations, and we are
refining the design of CodeFlow to adapt it to the needs of users. More specifically, we are targeting
the following future work for individual tools of CodeFlow.

Future work on parametrized source trees Our goal is to develop verification and debugging
functionalities for PSTs. The correctness of a tree can be verified by checking its structure and by
asserting the existence of all parameter definitions. We plan to augment parsed code from a tree with
debugging information and precise references to the templates that are responsible for each line of
code. Overall, our goal is to create a transparent way for tracing errors in generated code, such that
users remain in control of each step of the code transformation pipeline.

Future work on recipe DSL We plan to simplify recipe writing by removing the requirement to
state the arguments of action routines (args=[...] in Listing 9). This can be achieved by analyzing
ASTs of the definitions of the routines.

We are discussing with the community what requirements the DSL for Flash-X recipes needs to
satisfy. We are also experimenting with a custom syntax that is not borrowed from Python and that
can, therefore, be tailored to Flash-X.

Future work on control flow graphs When building the control flow graph, we plan to extend
the graph by hierarchically including subgraphs of lower-level recipes, utilizing Flash-X’s hierarchical
code configuration system.

We want to develop debugging functionality for tools that handle control flow graphs and, we want
to increase transparency for users by generating plots of graphs.

Our goal is to gather all information about input and output data of subroutines in a dictionary
and to use this dictionary to analyze the data movement in the the control flow graph. Furthermore,
we plan to generate optimized source code for data packing and movement.
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dIn = ConcurrentDataBegin (Uin=[’DENS’, ’'VELX'’, ’VELY’, ’VELZ’, 'PRES’, ’ENER’],
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A Generated PSTs and source code for Sedov example

1 {

2 " _code": |

3 "#include <cstdio>",

4 "#include <string>",

5 e

6 "#include <mpi.h>",

7 e

8 "#include \"Io.h\"",

9 "#include \"Hydro.h\"",

10 "#include \"Driver.h\"",

11 "#include \"Simulation.h\"",

12 e

13 "#include \"Grid REAL.h\"",

14 "#include \"Grid.h\"",

15 "#include \"Runtime.h\"",

16 "#include \"OrchestrationLogger.h\"",

17 e

18 "#include \"errorEstBlank.h\"",

19 -
20 "#include \"Flash_par.h\"",
21 e
22 "int main(int argc, charx argv[]) {",
23 " // TODO: Add in error handling code",
24 e
25 ! [/ MIMIC Driver _init",
26 " // Analogous to calling Log_init",
27 " orchestration :: Logger :: instantiate (rp_Simulation ::LOG_FILENAME) ; ",
28 e
29 ! // Analogous to calling Orchestration init",
30 " orchestration :: Runtime:: instantiate (rp_Runtime::N_THREAD TEAMS," ,
31 " rp_Runtime : :N_THREADS PER_TEAM, " ,
32 " rp_Runtime::N_STREAMS, " ,
33 " rp_Runtime : : MEMORY POOL_SIZE_BYTES) ; ",
34 e
35 ! // Analogous to calling Grid init",
36 ! orchestration :: Grid:: instantiate ();",
37 e
38 ! // Analogous to calling IO _init",
39 ! orchestration::Io::instantiate (rp_Simulation ::INTEGRAL_ QUANTITIES_ FILENAME) ; ",
40 e
41 ! int rank = 0;",
42 ! MPI_Comm _rank (GLOBAL _COMM, &rank);",
43 e
44 ! /)| ——— MIMIC Grid_initDomain" ,
45 ! orchestration :: Io& io = orchestration::Io::instance();",
46 ! orchestration :: Grid& grid = orchestration:: Grid:: instance ();",
47 ! orchestration :: Logger& logger = orchestration :: Logger ::instance();",
48 " orchestration :: Runtime& runtime = orchestration :: Runtime:: instance ();",
49 ! /* _param:runtime = runtime x/",
50 ! /* _param:a = A, param:b B; param:c = C x/",
51 e
52 " Driver :: dt = rp_Simulation ::DT_INIT;",
53 " Driver ::simTime = rp_Simulation::T_0;",
54 e
55 " logger .log (\"[Simulation] Generate mesh and set initial conditions\");",
56 ! grid .initDomain(Simulation:: setInitialConditions _tile_cpu,",
57 ! rp_Simulation ::N_THREADS_FOR_IC, ",
58 ! Simulation :: errorEstBlank);",
59 e
60 ! //————— OUTPUT RESULTS TO FILES",
61 ! // This only makes sense if the iteration is over LEAF blocks.",
62 ! RuntimeAction computelntQuantitiesByBlk;",
63 e
64 ! // TODO: Shouldn’t this be done through the IO unit?",
65 ! grid. writePlotfile (rp_ Simulation::NAME + \" plt ICs\");",
66 e
67 " // Compute local integral quantities",
68 " runtime . executeCpuTasks(\" IntegralQ\", computelntQuantitiesByBlk);",
69 " // Compute global integral quantities via DATA MOVEMENT" ,

70 U io.reduceToGloballntegralQuantities ();",

71 L io.writelntegralQuantities (Driver ::simTime) ;" ,

72 e

73 " ) —— SETUP ACTIONS" ,

74 {

75 " _param:indent": 1,

76 " link:setup": [

T

78 " _code": |

79 "RuntimeAction action_idl_ GPU;",
80 "action_idl_GPU .name = \"idl_GPU\";",
81 "action_idl_GPU.nlInitialThreads = 16;",
82 "action_idl_GPU.teamType = ThreadTeamDataType::SET_OF_ BLOCKS; " ,
83 "action idl_GPU.nTilesPerPacket = 64;",
84 "action idl_GPU.routine = subroutine idl1_GPU;"
85 ]
86 },
87
88 " _code": |
89 "RuntimeAction action_id3_CPU;",
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"action_id3_CPU .name = \"id3_CPU\";",
"action id3_CPU.nlInitialThreads = 4;",
"action_id3_CPU.teamType = ThreadTeamDataType ::BLOCK; " ,
"action_id3_CPU.nTilesPerPacket = 0;",
"action id3_CPU.routine = subroutine id3_CPU;"
|
}
|
s
i
" //————— MIMIC Driver evolveFlash",
" logger .log (\"[Simulation] \" + rp_Simulation::NAME 4 \" simulation started\");",
W
! unsigned int nStep = g7,
" while ((nStep <= rp_Simulation::MAX STEPS) && (Driver::simTime < rp_Simulation::T MAX)) {",
W
! // TODO: Log as well",
n if (rank —— MASTER PE) {",
" printf(\"Step n=%d / t=%.4e / dt=%.4e\\n\", nStep, Driver::simTime, Driver::dt);",
" }ﬂ’
-
! /) ———— ADVANCE SOLUTION BASED ON HYDRODYNAMICS" ,
Ui if (nStep > 1) {",
! grid. fillGuardCells ();",
1 "
”"7 }
! //————— EXECUTE ACTIONS, single block",
{
" _param:indent": 2,
" link:execute": |
{
" _code": |
" _param:runtime.executeExtendedGpuTasks(\" Action Pipeline\", action_idl_GPU, action_id3_CPU);"
|
}
|
i
! /[————— EXECUTE ACTIONS, interleaved with bookkeeping",
! /* _HIDE link:execute recipe 1 x/",
1 /17,
! // {’_HIDE_code’: hydro}",
! // {’_HIDE_code’: hypre}",
! // {’_HIDE_code’: ...}",
! // {’_HIDE_code’: ...}",
! // {’_HIDE_code’ R TN
" // {’ HIDE code’ 3,
" //]n7 - -
" /* driver bookkeeping */",
" /* HIDE link:execute recipe 2 x/",
! /1", B B -
" // {’_HIDE_ code’: hydro}",
" // {’_HIDE_ code’: hypre}",
! // {’_HIDE code’: ...}",
n //  {’_HIDE code’: ...}",
n //  {’_HIDE code’: ...}",
! // {’_HIDE_ code’ B,
1 1
/e
! /[————— OUTPUT RESULTS TO FILES",
! io.reduceToGloballntegralQuantities ();",
" io.writelntegralQuantities (Driver ::simTime) ;" ,
W
! if (!(nStep % rp_Driver::WRITE_EVERY_N_STEPS)) {",
" grid . writePlotfile (rp_Simulation ::NAME + \" _plt_\" + std::to_string(nStep));",
1 "
nn } ’
" //————— UPDATE GRID IF REQUIRED",
" // We are running in pseudo—UG for now and can therefore skip this",
w
! /)| ——— COMPUTE dt FOR NEXT STEP",
" // NOTE: The AllReduce that follows should appear here",
! // rather than be buried in Driver computeDt.",
1 /I,
! // When this problem is run in FLASH-X, the hydro dt is always greater",
! // than 5.0e—5 seconds. Therefore , using a dt value fixed to a smaller",
! // value should always keep us on the stable side of the CFL condition.",
U // Therefore, we skip the computeDt for Hydro here.",
n //II’
! // When a dt value of 5.0e—5 is used, FLASH-X complains that it is too",
" // low and sets dt to the Hydro CFL-determined dt value, which should be",
! // Simulation ::DT_INIT. There after, it allows for 5.0e—5. Therefore,",
! // we mimic that dt sequence here so that we can directly compare",
" // results.",
" Driver::dt = rp_Driver::DT_AFTER;",
W
! ++nStep; ",
w
" }H7

" logger .log (\"[Simulation] \" 4 rp_ Simulation::NAME + \" simulation terminated\");",
! if (Driver::simTime >= rp Simulation::T MAX) {",

Logger::instance () .log (\"[Simulation]| Reached max SimTime\");",
" 1,
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183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

}

|

"
"
"
"
"

TRO
)

param

param :

param

param :
param :

grid. writePlotfile (rp_Simulation::NAME + \" _plt_final\");",
nStep = std::min(nStep, rp_Simulation::MAX STEPS);",
yy— CLEAN-UP" ,

// The singletons are finalized automatically when the program is
// terminating.",

"
)

return 0;",

:runtime": "runtime",
al. MAWM

: s
PRI =t
:b": "B",

w.oonEn
@mg TG

file ": "ex sedov driver Default.cpp"

Listing 10: Sedov example: Generated PST of driver.
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-~

" code": |
"#include \"Eos.h\"",
"#include \"Hydro.h\"",
"#include \"Driver.h\"",
"#include \"Flash.h\"",

" _link:setup": [

{

10 " code":

11 “"#ifndef ENABLE OPENACC_ OFFLOAD",

12 "#error \"This file should only be compiled if using OpenACC offloading\"",

13 "dendif"

14 "#include \"DataPacket.h\"",

15 "#include \"StreamManager.h\""

16 1,

17 " _param: __file

18 }

19 ]

OO~ UkWN -

": "ex sedov subroutine GPU main. json"

>
21 "void _param:functionName(const int _param:tId, orchestration :: Dataltem* _param:dataltem)",
29 ngw,

23 ! using namespace orchestration;",

24 {

25 " _param:indent": 1,

26 " _link:execute": |

28 " _param:queue": "queue_ h",

29 " _param:nTiles": "nTiles_d",

30 " _param:contents": "contents_ d",

31 " _param:dt": "dt_d",

32 " _code":

33 "DataPacket * packet _h = dynamic_cast<DataPacket*>(_param:dataltem);",
34 "const PacketDataLocation location = packet h—>getDataLocation ();",

35 "const int __param: queue = packet _h—>asynchronousQueue () ;",
36 "const std::size tx* _param: nTiles = packet _h—>nTilesGpu();",

37 "const PacketContentsx _param:contents = packet_ h—>tilePointers ();",

38 "const Realsx* __param:dt = packet h—>timeStepGpu();",

39 "packet h—>setVariableMask (UNK_VARS BEGIN_ C, UNK VARS END C);",

41 " link:setup": []

s
43 "#pragma acc data deviceptr(_param:nTiles, _param:contents, _param:dt)",
44 n{u R

45 " if (location == PacketDataLocation::CCl) {",

47 " _param:indent": 2,

48 " _param:pointer_U": "CCl_d",
49 " _param:pointer auxC": "CC2_d",
50 " _link:execute": |

51

52 " _param:iterIndex":
53 " _code": [

54 "#pragma acc parallel loop gang default(none) async(_param:queue)",

55 "for (std::size_ t _param:iterIndex=0; _param:iterIndex <«nTiles d; -4+ param:iterIndex) {"

56 {

57 " param:indent": 1,

58 " _link:execute": [

59 {

60 " _param:U": "U_d",

61 " _param:auxC": "auxC_d",

62 " _param: flX": "ptrs—>FCX_d",

63 " _param: flY": "ptrs—>FCY_d",

64 " _param: flZ": "ptrs—>FCZ_d",

65 " _param:lo": "ptrs—>lo_d",

66 " _param:hi": "ptrs—>hi_d",

67 " _param:deltas": "ptrs—>deltas_d",

68 " _param:setup U": "FArray4Dx* _ param:U = ptrs—>_ param:pointer_ U;",

69 " param:setup auxC": "FArray4D=x param:auxC = ptrs—> param:pointer auxC;",
70 ”:code": - - - -

71 "const PacketContents* ptrs = _param:contents + _param:iterIndex;",

73 " link:setup": [

74 {

75 " code": |

76 "FArraydD* _ param:U ptrs—>_param:pointer U;",
77 "FArraydD* _ param:auxC = ptrs—>_ param:pointer auxC;"

79 }
80 1
81 }s

83 " _link:execute": |
85 " _code": |
86 "hy computeSoundSpeedHll GPU(_param:lo, _param:hi, _param:U, _param:auxC
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93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

153

181

n

__file_ _

_param:iterIndex":

_param: __file_ _": "ex_ sedov_subroutine GPU_action_kernel.json"

": "ex_sedov_subroutine GPU _action_loop.json"

nn

n-,

" code":
“"#pragma acc parallel loop gang default (none) async (_param: queue)",
"for (std::size_t _param:iterIndex=0; _param:iterIndex <*nTiles_d; 4+ param:iterIndex) {"
{
" _param:indent": 1,
" link:execute": |

{

n
"
"
"
"
"
n
n
n
"
"

_param:U": "U_d",

param:auxC": "auxC d",
“param: flIX": "ptrs—>FCX d",
:param g iHINZ g W ptrs—>FCY:d" 5
_param: fl1Z": "ptrs—>FCZ d",
_param:lo": "ptrs—>lo_ d",
_param: hi": "ptrs—>hi_d",
_param:deltas": "ptrs—>deltas_d",
_param:setup_U": "FArray4dDx _ param:U = ptrs—>_param:pointer_ U;",
_param:setup_auxC": "FArray4Dx _ param:auxC = ptrs—>_ param:pointer_auxC;",
_code":
"const PacketContents* ptrs = _param:contents + _param:iterIndex;",
" link:setup": [
" code": [

"

T"FArray4D sk _param:U ptrs—>_ param:pointer_U;",
"FArray4dD+ _ param:auxC = ptrs—> param:pointer auxC;"

}
|
b

{
" _link:execute": |
" _code": |
"hy computeFluxesHlIl GPU(_param:dt, _param:lo, _param:hi, _param:deltas,
_param:U, _param:flX, _param:flY , _param:flZ , _param:auxC);"
|
}
|
}
I,
" _param: __file " "ex sedov_subroutine GPU _action_kernel.json"
}
|
i
1,
" param: file  ": "ex sedov_subroutine GPU _action_ loop.json"
}s
{
" _param:iterIndex": "n",
" _code": [
"#pragma acc parallel loop gang default(none) async(_param:queue)",
"for (std::size_t _param:iterIndex=0; _param:iterIndex <*nTiles_d; 4+ param:iterIndex) {"
{
" _param:indent": 1,
" link:execute": [
{
" _param:U": "U_d",
" param:auxC": "auxC d",
" param: flIX": "ptrs—>FCX d",
" param: flY": "ptrs—>FCY d",
" param: flZ": "ptrs—>FCZ d",
":param: lo": " ptrs—>107d7,
" param:hi": "ptrs—>hi_ d",
" _param:deltas": "ptrs—>deltas_d",
" _param:setup_U": "FArray4D* _ param:U = ptrs—>_param:pointer_ U;",
" param:setup auxC": "FArray4Dsx param:auxC = ptrs—> param:pointer auxC;",
" code": - - - -
“"const PacketContentsx ptrs = _param:contents + _param:iterIndex;",
" _link:setup": [
" _code": |
"FArray4dDx _ param:U = ptrs—>_ param:pointer U;"

|
}
|
I
{

" link:execute": [
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184
185
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190
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193
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197
198
199
200
201

202
203
204
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206
207
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209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
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234
235
236
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238
239
240
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244
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256
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258
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263

_param: flY ,

"

"

n

"

" code":

_"hyiupdateSOIutionHlliGPU(7param: lo, _param:hi, _param:U, _param:flX,
_param: f1Z) ;"
|
}
|
}
I,
" _param: __file " "ex_ sedov_subroutine_ GPU_action_kernel. json"
]
i
I,
" _param: __file_ _": "ex sedov_subroutine GPU _action_loop.json"
}s
{
" param:iterIndex": "n",
" code" :
“"#pragma acc parallel loop gang default (none) async (_param:queue)",
"for (std::size t _param:iterIndex=0; _param:iterIndex <*nTiles d; 4+ param:iterIndex)
{
" param:indent": 1,
" _link:execute": |
" _param:U": "U_d",
" _param:auxC": "auxC_d",
" _param: flIX": "ptrs—>FCX_d",
" _param: flY": "ptrs—>FCY_d",
" _param: flZ": "ptrs—>FCZ_d",
" _param:lo": "ptrs—>lo_d",
" _param:hi": "ptrs—>hi_d",
" _param:deltas": "ptrs—>deltas d",
" _param:setup_ U": "FArray4Dx* _ param:U —= ptrs—>_ param:pointer U;",
" _param:setup auxC": "FArray4Dx _ param:auxC = ptrs—>_ param:pointer auxC;",
" _code":
"const PacketContents* ptrs = _param:contents + _param:iterIndex;",
" link:setup": [
{
" code":
_"FArray4D* _param:U = ptrs—>_param:pointer U;"
|
}
|
}s
{
" _link:execute": |
{
" _code": |
"eos idealGammaDensle GPU(_param:lo, _param:hi, _param:U);"
|
}
|
}
1,
" param: file ": "ex sedov_subroutine GPU action kernel.json"
}
|
s
”}IV
1,
" _param: __file_ ": "ex_ sedov_subroutine GPU _action_loop.json"
}
} else if (location == PacketDataLocation::CC2) {",
_param:indent": 2,
__param:pointer U": "CC2_d",
_param: pointer _auxC": "CCl_d",
_link:execute": |

n

_param:iterIndex":

n",

" code": [
"#pragma acc parallel loop gang default(none) async(_param:queue)",
"for (std::size_t _param:iterIndex=0; _param:iterIndex <#nTiles_d; ++_ param:iterIndex)
{
" _param:indent": 1,
" link:execute": |
" _param:U": "U_d",
" _param:auxC": "auxC_d",
" _param: flIX": "ptrs —>FCX_d",
" _param: flY": "ptrs —>FCY_d",
" param: flZ": "ptrs—>FCZ d",
" param:lo": "ptrs—>lo d",
”:param: him": " ptrs—>hi:d” 5
" param:deltas": "ptrs—>deltas d",
" param:setup U": "FArray4D*x _ param:U = ptrs—>_ param:pointer_ U;",
" param:setup auxC": "FArray4Dx  param:auxC = ptrs—> param:pointer auxC;",
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272 " _code":
273 "const PacketContents* ptrs = param:contents + param:iterIndex;",
274 N -
275 " link:setup": [
276 {
277 " _code": |
278 "FArraydDx _ param:U = ptrs—>_param:pointer_ U;",
279 "FArraydD* _ param:auxC = ptrs—>_ param:pointer auxC;"
280 ]
281 }
282 ]
283 1,
284 {
285 " _link:execute": |
286 {
287 " _code": |
288 "hy computeSoundSpeedHll GPU( param:lo , param: hi , param:U, param : auxC
5" - D - - B
289 ]
290 }
291 ]
292 }
293 s
294 " param: file ": "ex sedov_subroutine GPU _ action kernel.json"
295 }
296 ]
297
298 nyn
299 ,
300 " _param: __file__": "ex sedov_subroutine GPU _action_loop.json"
301 Y,
302 {
303 " _param:iterIndex": "n",
304 " _code": [
305 "#pragma acc parallel loop gang default(none) async(_param:queue)",
306 "for (std::size t _param:iterIndex=0; _param:iterIndex <«nTiles d; 4+ param:iterIndex) {"
5
307 {
308 " param:indent": 1,
309 " link:execute": |
310 {
311 " param:U": "U d",
312 " :param rauxC": " auxC_d",
313 " _param: flIX": "ptrs—>FCX_d",
314 " _param: flY": "ptrs—>FCY_d",
315 " _param: flZ": "ptrs—>FCZ_d",
316 " _param:lo": "ptrs—>lo_d",
317 " _param:hi": "ptrs—>hi_d",
318 " _param:deltas": "ptrs—>deltas_d",
319 " _param:setup_ U": "FArray4Dx* _ param:U — ptrs—>_ param:pointer_ U;",
320 " _param:setup_auxC": "FArray4Dx _ param:auxC = ptrs—>_ param:pointer auxC;",
321 " _code":
322 "const PacketContents* ptrs = _param:contents | _param:iterIndex;",
323
324 " link:setup": [
325 {
326 " code": |
327 "FArray4D*  param:U = ptrs—>_ param:pointer U;",
328 "FArraydD* _ param:auxC = ptrs—>_ param:pointer auxC;"
329 ]
330 3
331 ]
332 Y,
333 {
334 " _link:execute": |
335 {
336 " _code": |
337 "hy computeFluxesHlIl GPU(_param:dt, _param:lo, _param:hi, _param:deltas,
_param:U, _param:flX, param:flY, _param:flZ , _param:auxC);"
}
|
}
s
" param: _file ": "ex sedov_subroutine GPU action kernel.json"
}
|
o
1,
" param _file_ " "ex sedov_subroutine_ GPU _action_loop.json"
}s
{
" _param:iterIndex": "n",
" _code": [
"#pragma acc parallel loop gang default(none) async(_param:queue)",
"for (std::size_t _param:iterIndex=0; _param:iterIndex <«nTiles_ d; ++_ param:iterIndex) {"
B
356 {
357 " param:indent": 1,
358 " link:execute": |
359
360 " param:U": "U_d",
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361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

_param: flY ,

" _param:auxC": "auxC_d",
" param: flX": "ptrs—>FCX d",
" _param:flY": "ptrs —>FCY_d",
" param: flZ": "ptrs—>FCZ_d",
" param:lo": "ptrs—>lo_d",
" param:hi": "ptrs—>hi d",
" _param:deltas": "ptrs—>deltas_d",
" _param:setup_U": "FArray4D* _ param:U = ptrs—>_param:pointer_ U;",
" _param:setup_auxC": "FArray4dDx _ param:auxC = ptrs—>_ param:pointer auxC;",
" code":
“"const PacketContentsx ptrs = _param:contents + _param:iterIndex;",
" _link:setup": [
" _code": |
"FArray4dD+ _ param:U — ptrs—>_param:pointer_ U;"
|
}
|
}s
{
" link:execute": |
" code": |
"hy updateSolutionHll _GPU (_param:lo, _param:hi, _param:U, _param:flX,
_param: fl1Z) ;"
|
}
|
}
I,
" _param: __file_ " "ex_ sedov_subroutine_ GPU _action_kernel.json"
}
|
o
1,
" param: _file_ ": "ex sedov_subroutine GPU_action_ loop.json"
s
" param:iterIndex": "n",
" code":
“"#pragma acc parallel loop gang default (none) async(_param:queue)",
"for (std::size_t _param:iterIndex=0; _param:iterIndex <#nTiles_d; ++_ param:iterIndex)
{
" _param:indent": 1,
" _link:execute": |
" _param:U": "U_d",
" _param:auxC": "auxC_d",
" _param: fIX": "ptrs —>FCX_d",
" _param: flY": "ptrs —>FCY_d",
" param: flZ": "ptrs—>FCZ d",
" param:lo": "ptrs—>lo_d",
" param:hi": "ptrs—>hi_d",
" param:deltas": "ptrs—>deltas d",
" param:setup U": "FArray4Dx  param:U = ptrs—>_ param:pointer U;",
" _param:setup_auxC": "FArray4dDx _ param:auxC = ptrs—>_param:pointer auxC;",
" code":
“"const PacketContentsx ptrs = _param:contents + _param:iterIndex;",
" _link:setup": [
" _code": |
"FArray4dD* _ param:U — ptrs—>_param:pointer_U;"
|
}
|
IE
{
" link:execute": [
" code":
7"eosiidealGammaDensIeiGPU (_param:lo, param:hi, param:U) ;"
|
}
|
}
1,
" _param: __file_ " "ex_ sedov_subroutine_ GPU_action_kernel. json"
¥
]
e
,
" _param: __file_ _": "ex sedov_subroutine_ GPU _action_loop.json"
} else {",
throw std::logic_ error (\"[_ param:functionName]| Data location is not CCl or CC2\");",
b
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"} // OpenACC data block",
"#pragma acc wait (_param:queue)"

b

" param: _file_ ": "ex sedov_subroutine GPU_main. json"
}
|

}s

ity
I,
" _param: functionName": "subroutine_ idl_GPU",
" _param:tId": "dataltem",
" _param:dataltem": "dataltem",
" param: __file _": "ex_ sedov_subroutine Default main.json"

Listing 11: Sedov example: Generated PST of GPU subroutine.
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62

64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79

80
82
83
85
86

87
88

-~

"

“"#include

code": |

"#include
"#include

"#include \"Flash

" _link:setup":

{

" code":

\VVEOS‘h\VV n s
\"Hydro.h\"",
\"Driver .h\"",

Ch\"",

[

T"#include \" Tile.h\""

1,

" _param:___file_ ": "ex_ sedov_subroutine CPU_main. json"
}
|
+s
"void _param:functionName (const int _param:tId, orchestration :: Dataltem _param:dataltem)",
II{H
! using namespace orchestration;",
{
" param:indent": 1,
":link:execute":
" param:dt": "Driver::dt",
" _param:lo": "tileDesc—>lo ()",
" _param:hi": "tileDesc—>hi()",
" _param:deltas": "tileDesc—>deltas ()",
" _param:level": "tileDesc—>level ()",
" _param:U": "tileDesc—>data ()",
" code":
“"Tilex tileDesc = dynamic_cast<Tile*>(_param:dataltem);",
{
" link:setup": []
+s
{
" _link:execute":
{
" param: flX": "fIX",
" param: flY": "fIX",
”:param:flz": "flz",
" param:auxC": "auxC",
" _param:volumes": "volumes",
" _param:fHiX": "IntVect{LIST NDIM(hi.I()+KID, hi.J(), hi.K())}",
" _param:fHiY": "IntVect{LIST_NDIM(hi.I(), hi.J()+K2D, hi.K())}",
" _param:fHiZ": "IntVect{LIST_NDIM(hi.I(), hi.J(), hi.K()+K3D)}",
" _param:setup_flX": "FArray4D _ param:flX = FArray4D:: buildScratchArray4D (lo, _param:fHiX,
NFLUXES) ; ",
" _param:setup_flY": "FArray4D _ param:flY = FArray4D:: buildScratchArray4D (lo, _param:fHiY,
NFLUXES) ; " ,
" param:setup_flZ": "FArray4D _ param: flZ = FArray4D :: buildScratchArray4D (lo, _param:fHiZ,
NFLUXES) ; " ,
" param:cLo": "IntVect{LIST NDIM(lo.I()-K1D, lo.J()—K2D, lo.K()-K3D)}",
" param:cHi": "IntVect{LIST NDIM(hi.I()+KID, hi.J()+K2D, hi.K()+K3D)}",
" _param:setup_auxC": "FArray3D _ param:auxC = FArray3D:: buildScratchArray (_param:cLo,
_param:cHi);",
" param:setup volumes": [
"Grid& grid = Grid::instance ();",
"Real volumes buffer|[ (_param:hi.I() — param:lo.I() + 1)",
" # (_param:hi.J() — _param:lo.J() + 1)",
" # (_param:hi.K() — _param:lo.K() + 1)];",

"grid . fillCellVolumes (_param:level ,

"const FArray3D _ param:volumes = {volumes_buffer, _param:lo,
,
" code": [
_n{u7
{
" _param:indent": 1,
" _link:setup": [
" _code": |
"Grid& grid = Grid::instance ();",
"Real volumes buffer|[ (_param:hi.I()
" * (_param:hi.J()
" * (_param:hi.K()

"grid . fillCellVolumes (_param:level ,
"const FArray3D

]

_param:lo ,

__param: lo ,
__param:volumes =

__param: hi,

__param: hi ,
{volumes buffer ,

volumes _buffer);",

_param: hi };"

— _param:lo.I() + 1)",
— _param:lo.J() + 1)",
— param:lo.K() + 1)];",

volumes buffer);",
_param:lo, param:hi};"

}
s
" _link:execute": |
" _code": |
"io_computelntegralQuantitiesByBlock CPU (_param:tId, _param:lo, _param:hi,
_param:volumes, _param:U) ;"
|
}
|
}s
W
s
" param: __file_ ": "ex sedov_subroutine CPU _action_ kernel.json"
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89 }
90 1,

91 " param: file ": "ex sedov subroutine CPU _ main. json"
92 j T - - - -

93 ]

94 },

95 ity

%6 1,

97 " _param: functionName": "subroutine_ id3_CPU",

98 " _param:tId": "dataltem",

99 " _param:dataltem": "dataltem",

100 " _param: __file _": "ex_ sedov_subroutine_ Default main.json"

101 }

Listing 12: Sedov example: Generated PST of CPU subroutine.
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/* <ex_sedov_driver Default.cpp> */
#include <cstdio>
#include <string>

NN

#include <mpi.h>

5

#include "Io.h"
#include "Hydro.h"
#include "Driver.h"
#include "Simulation.h"

#include "Grid REAL.h"

#include "Grid.h"

#include "Runtime.h"

#include "OrchestrationLogger.h"

#include "errorEstBlank.h"
#include "Flash_ par.h"

int main(int argc, char* argv|[]) {
// TODO: Add in error handling code

/| — MIMIC Driver init
// Analogous to calling Log init
orchestration :: Logger::instantiate (rp_Simulation ::LOG_FILENAME) ;

// Analogous to calling Orchestration init

orchestration :: Runtime:: instantiate (rp_Runtime::N_THREAD TEAMS,
rp_Runtime ::N_THREADS PER_TEAM,
rp_Runtime ::N_STREAMS,
rp_Runtime : : MEMORY_POOL_SIZE_BYTES) ;

// Analogous to calling Grid_init
orchestration :: Grid:: instantiate () ;

// Analogous to calling IO _init
orchestration::To:: instantiate (rp_Simulation ::INTEGRAL QUANTITIES FILENAME) ;

int rank = 0;
MPI_Comm_rank (GLOBAL COMM, &rank) ;

//———— MIMIC Grid initDomain

orchestration :: Io& io = orchestration :: Io::instance () ;
orchestration :: Grid& grid = orchestration :: Grid :: instance () ;
orchestration :: Logger& logger = orchestration Logger::instance () ;
orchestration :: Runtime& runtime = orchestration :: Runtime:: instance () ;
/* runtime = runtime x/

/* A=A, BB; C=2C %/

Driver ::dt rp_Simulation :: DT_INIT;
Driver ::simTime = rp_Simulation::T_0;

logger.log("[Simulation] Generate mesh and set initial conditions");

grid .initDomain (Simulation:: setInitialConditions tile cpu,
rp_Simulation : :NiTHREADsiFORilcT -
Simulation :: errorEstBlank) ;

//———— OUTPUT RESULTS TO FILES
// This only makes sense if the iteration is over LEAF blocks.
RuntimeAction computelntQuantitiesByBlk;

// TODO: Shouldn’t this be done through the IO unit?
grid. writePlotfile (rp_Simulation::NAME + " plt_ ICs");

// Compute local integral quantities

runtime . executeCpuTasks("IntegralQ", computelntQuantitiesByBlk) ;
// Compute global integral quantities via DATA MOVEMENT
io.reduceToGloballntegralQuantities () ;
io.writelntegralQuantities (Driver ::simTime) ;

/| ——— SETUP ACTIONS
RuntimeAction action_idl_ GPU;

action__idl_GPU .name = "idl_GPU";

action _idl_GPU.nlInitialThreads = 16;

action idl_GPU.teamType = ThreadTeamDataType::SET_OF BLOCKS;
action_idl_GPU.nTilesPerPacket = 64;

action_idl_GPU.routine = subroutine_idl_GPU;
RuntimeAction action_id3_CPU;

action_id3_CPU .name = "id3_CPU";
action_id3_CPU.nlInitialThreads = 4;

action_id3_CPU.teamType = ThreadTeamDataType : : BLOCK;
action_id3_CPU.nTilesPerPacket = 0;

action _id3_CPU.routine = subroutine_id3_CPU;

//— MIMIC Driver evolveFlash
logger.log ("[Simulation] " + rp_Simulation::NAME + " simulation started");

unsigned int nStep = g
while ((nStep <= rp_Simulation::MAX STEPS) && (Driver ::simTime < rp_Simulation::T MAX)) {

// TODO: Log as well
if (rank == MASTER PE) {
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94 printf ("Step n=%d / t=%.4e / dt=%.4e\n", nStep, Driver::simTime, Driver::dt);

96

97 /) —— ADVANCE SOLUTION BASED ON HYDRODYNAMICS

98 if (nStep > 1)

99 grid . fillGuardCells () ;

100

101

102 /| — EXECUTE ACTIONS

103 runtime . executeExtendedGpuTasks (" Action Pipeline", action_idl_GPU, action_id3_CPU);
104

105 /| — OUTPUT RESULTS TO FILES

106 io.reduceToGloballntegralQuantities () ;

107 io.writelntegralQuantities (Driver ::simTime) ;

108

109 if (!(nStep % rp_Driver::WRITE_EVERY_ N_STEPS)) {

110 grid . writePlotfile (rp_Simulation::NAME + " plt " + std::to_string(nStep));
111 }

112

113 /| —— UPDATE GRID IF REQUIRED

114 // We are running in pseudo—UG for now and can therefore skip this

115

116 //————— COMPUTE dt FOR NEXT STEP

117 // NOTE: The AllReduce that follows should appear here

118 // rather than be buried in Driver computeDt.

119 //

120 // When this problem is run in FLASH-X, the hydro dt is always greater
121 // than 5.0e—5 seconds. Therefore, using a dt value fixed to a smaller
122 // value should always keep us on the stable side of the CFL condition.
123 // Therefore, we skip the computeDt for Hydro here.

124 //

125 // When a dt value of 5.0e—5 is used, FLASH-X complains that it is too
126 // low and sets dt to the Hydro CFL-determined dt value, which should be
127 // Simulation ::DT_ INIT. There after, it allows for 5.0e—5. Therefore,
128 // we mimic that dt sequence here so that we can directly compare

129 // results.

130 Driver::dt = rp Driver::DT AFTER;

131 N -

132 ++nStep;

133

134

135 logger.log ("[Simulation] " 4 rp_Simulation::NAME + " simulation terminated");
136 if (Driver::simTime >= rp_Simulation ::T _MAX) {

137 Logger::instance () .log (" [Simulation] Reached max SimTime") ;

138

139 grid . writePlotfile (rp_Simulation::NAME + " plt_ final");

140

141 nStep = std::min(nStep, rp_Simulation::MAX_ STEPS) ;

142

143 / ———— CLEAN-UP

144 // The singletons are finalized automatically when the program is

145 // terminating .

146

147 return 0;

148

149 /+ </ex sedov _driver Default.cpp> */

Listing 13: Sedov example: Generated C++ code of driver.
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15
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

79
80

89
90

/* <ex sedov subroutine Default main.json> x/
#include "Eos.h" N N
#include "Hydro.h"
#include "Driver.h"
#include "Flash.h"
/% <ex sedov_subroutine GPU_ main.json> x/
#ifndef ENABLE OPENACC_OFFLOAD
#error "This file should only be compiled if using OpenACC offloading"
#endif
#include "DataPacket.h"
#include "StreamManager.h"
/* </ex_sedov_subroutine_ GPU_main.json> x/
void subroutine idl_GPU(const int dataltem , orchestration ::Dataltem* dataltem)
{
using namespace orchestration;
/* <ex_sedov_subroutine_ GPU_main.json> x/

DataPacket* packet _h = dynamic_ cast<DataPacket*>(dataltem) ;
const PacketDataLocation location = packet_IT—>getDataLocation();

const int queue_h = packet _h—>asynchronousQueue () ;
const std::size tx nTiles d = packet _h—>nTilesGpu () ;

const PacketContentsx contents d = packet h—>tilePointers () ;

const Realx dt d = packet _h—>timeStepGpu () ;

packet _h—>setVariableMask (UNK_VARS_BEGIN_ C, UNK_VARS END C);

#pragma acc data deviceptr(nTiles d, contents d, dt_d)

if (location == PacketDataLocation::CC1) {

/* <ex sedov_subroutine GPU action loop.json> x/

#pragma acc parallel loop gang default(none) async(queue_h)

for (std::size_t n=0; n<#nTiles_d; +4n)
/* <ex_sedov_subroutine_ GPU _action_kernel.json> x*/
const PacketContents* ptrs — contents_d + n;
FArray4Dx U_d = ptrs—>CCl_d;
FArray4D+ auxC_d = ptrs—>CC2_d;
hy computeSoundSpeedHll GPU(ptrs—>lo_d, ptrs—>hi_d, U_d, auxC_d);
/* </ex_sedov_subroutine GPU_ action_kernel.json> x/

/* </ex sedov_ subroutine GPU action loop.json> x*/
/* <exigedov7€llbrout,ine77GPU73(‘,1,i0117T00p4json‘> */
#pragma acc parallel loop gang default(none) async(queue_ h)
for (std::size t n=0; n<xnTiles d; ++4n) {
/ * <exised7)v7subrouti1167GPﬁiactinnikernelAjson?/- */
const PacketContentsx* ptrs = contents_d + n;
FArray4dDx U_d = ptrs—>CCl_d;
FArray4D*x auxC d = ptrs—>CC2 d;

hy computeFluxesHll GPU(dt_d, ptrs—>lo_d, ptrs—>hi_d, ptrs—>deltas _d, U_d, ptrs—>FCX_ d, ptrs

—>FCY_d, ptrs—>FCZ_d, auxC_d);
/* </ex_sedov_subroutine_  GPU_action_kernel.json> x/
}

/* </ex_sedov_subroutine_GPU _action_loop.json> x*/
/* <ex sedov subroutine GPU action loop.json> x/
#pragma acc parallel loop gang default(none) async(queue h)
for (std::size_t n=0; n<+*nTiles_d; 44n)
/* <ex_sedov_subroutine GPU _action_kernel.json> x*/
const PacketContentsx* ptrs = contents_d + n;
FArray4dD*x U d = ptrs—>CCl1_d;

hyiupdateSoluitionHlliGPU(ptrs:>107d, ptrs—>hi_d, U_d, ptrs—>FCX d, ptrs—>FCY_d, ptrs—>FCZ_d)

/* </ex sedov_ subroutine GPU action kernel.json> %/
}
/* </ex sedov_subroutine GPU action loop.json> x/
/* <ex sedov_ subroutine GPU action loop.json> x/
#pragma acc parallel loop gang default(none) async(queue_h)
for (std::size_t n=0; n<#nTiles_d; +4n) {
/* <ex_sedov_subroutine_ GPU _action_kernel.json> x*/
const PacketContents* ptrs — contents_d + n;
FArray4Dx U_d = ptrs—>CCl1_d;
eos _idealGammaDensle_ GPU(ptrs—>lo_d, ptrs—>hi_d, U_d);
/* </ex_sedov_subroutine_GPU_ action_kernel.json> x/
}
/* </ex_sedov_subroutine_GPU _action_ loop.json> x/
} else if (location == PacketDataLocation::CC2) {
/* <ex_ sedov_subroutine GPU_action_loop.json> x/
#pragma acc parallel loop gang default(none) async(queue_ h)
for (std::size t n=0; n<*nTiles d; +4n) {
/ * (\‘exisedzv75\1bt0uhiﬂ€fGPUiactionikernelAjson> x/
const PacketContentsx ptrs = contents_d + n;
FArray4dDx U_d = ptrs—>CC2_d;
FArray4Dx auxC_d = ptrs—>CCl_d;
hy _computeSoundSpeedHll _GPU (ptrs—>lo_d, ptrs—>hi_d, U_d, auxC_d);
/* </ex sedov subroutine GPU action kernel.json> x/
}
/* </ex_sedov_subroutine_GPU _action_ loop.json> x*/
/* <ex_sedov_subroutine GPU _action_loop.json> x/
#pragma acc parallel loop gang default(none) async(queue_h)
for (std::size_t n=0; n<+nTiles_d; 4+4n) {
/* <ex sedov subroutine GPU action kernel.json> x/
const PacketContents* ptrs — conte;ts_d + n;
FArray4D* U_d = ptrs—>CC2_d;
FArray4D* auxC_d = ptrs—>CCl_d;
hy computeFluxesHlIl GPU(dt_d, ptrs—>lo_d, ptrs—>hi_d, ptrs—>deltas d,
—>FCY d, ptrs—>FCZ d, auxC _d);
- / * <,/exisedov7:ubr0utine7GPUiaction7kernelA_json> */
}
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/* </ex sedov_subroutine GPU action loop.json> x/
/* <ex7§edov7EubroutineiiGPU77action7Toop4json,> */
#pragma acc parallel loop gang default (none) async(queueih)
for (std::size t n=0; n<xnTiles d; ++4n) {
/* <exised?)v7subroutineiGPU7actionikerne1Ajson> */
const PacketContentsx* ptrs = contents _d + n;
FArray4dDx U d = ptrs—>CC2_d;

hy_updateSolu_tionHll_GPU(ptrs—>lo_d, ptrs—>hi_d, U_d, ptrs—>FCX_d, ptrs—>FCY_d, ptrs—>FCZ_d)

/* </ex_sedov_subroutine_ GPU _action_kernel.json> x/

}

/* </ex_sedov_subroutine_GPU _action_loop.json> x*/

/* <ex_sedov_subroutine GPU _action_loop.json> x/

#pragma acc parallel loop gang default(none) async(queue_h)

for (std::size_t n=0; n<+nTiles_d; 4+4n) {
/* <ex_sedov_subroutine_ GPU _action_kernel.json> x*/
const PacketContentssx* ptrs = contents_d + n;
FArray4D* U_d = ptrs—>CC2_d;
eos idealGammaDensle GPU (ptrs—>lo d, ptrs—>hi d, U d);
/ * 7<,/exisedov7subroﬁtineiGPUiactiionikernel.jsgn> */

}

/* </ex sedov_subroutine GPU _action loop.json> x/

} else {

throw std::logic_error ("[subroutine idl GPU] Data location is not CCl or CC2");

}
} // OpenACC data block
#pragma acc wait (queue_h)
/* </ex_sedov_subroutine_ GPU_main.json> x/

/* </ex_sedov_subroutine Default main.json> x/

Listing 14: Sedov example: Generated C++ code of GPU subroutine.

/* <ex sedov subroutine Default main.json> x/

#include "Eos.h" - -

#include "Hydro.h"

#include "Driver.h"

#include "Flash.h"

/* <ex_sedov_subroutine_ CPU_main.json> x/

#include "Tile.h"

/* </ex_sedov_subroutine_ CPU_main.json> x/

void subroutine_id3_CPU(const int dataltem , orchestration ::Dataltem* dataltem)

{
using namespace orchestration;
/* <ex sedov_subroutine CPU_ main. json> x/
Tilex tileDesc = dynamic cast<Tilex>(dataltem);
/* <exisedovisubroutine7C?Uiactionikernel.json> */
Grid& grid = Grid::instance () ;
Real volumes buffer|[ (tileDesc—>hi().I() — tileDesc—>lo().I() + 1)
* (tileDesc—>hi().J() — tileDesc—>lo().J() + 1)
* (tileDesc—>hi().K() — tileDesc—>lo () .K() + 1)];
grid . fillCellVolumes (tileDesc—>level (), tileDesc—>lo (), tileDesc—>hi(), volumes_buffer);
const FArray3D volumes = {volumes_buffer, tileDesc—>lo (), tileDesc—>hi() };
io_computelntegralQuantitiesByBlock CPU (dataltem , tileDesc—>lo (), tileDesc—>hi(), volumes,
—>data());
/* </ex_sedov_subroutine CPU_action_kernel.json> x/
/* </ex_sedov_subroutine_ CPU_main. json> %/
}

/* </ex_sedov_subroutine_ Default main.json> x/

Listing 15: Sedov example: Generated C++ code of CPU subroutine.

30

tileDesc



Argon ne‘)

NATIONAI 1ARORATORY

Mathematics and Computer Science
Argonne National Laboratory

9700 South Cass Avenue, Bldg. #num

Argonne, IL 60439

www.anl.gov

U.S. DEPARTMENT OF

'ENERGY

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC



	Introduction
	Code transformation with source trees and abstract syntax trees
	Parametrized source trees
	Abstract syntax trees

	Code orchestration with hierarchical control flow graphs
	Patterns
	Recipes
	Control flow graphs

	Sedov example demonstrating a proof of concept
	Discussion and future work
	Generated PSTs and source code for Sedov example

